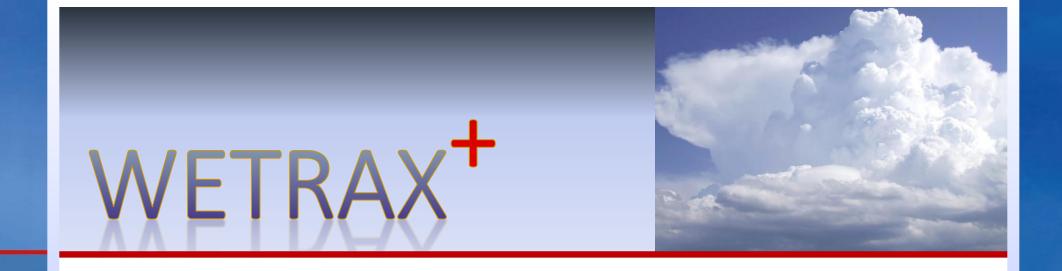

Weather Patterns, Cyclone Tracks, and Related Precipitation Extremes


WETRAX

Großflächige Starkniederschläge im Klimawandel

Bezugsregion: südliches Mitteleuropa

Vorläufer-Projekt 2012-2015

www.zamg.ac.at/veranstaltungen/WETRAX_2015
Abschlussbericht in Geographica Augustana 19, 2015

Folgeprojekt 2018-2021

Bayerisches Landesamt für Umwelt

Bundesministerium
Nachhaltigkeit und Tourismus

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

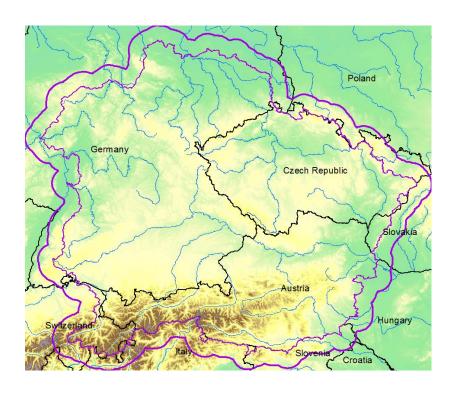
Wichtigste Neuerungen gegenüber Vorläufer-Projekt:

- Aktualisierter gegitterter Niederschlagsdatensatz (zuvor nur bis 2006 verfügbar)
- Kombinierte Zirkulationstyp-Zugbahnen-Klassifikation (zuvor separat analysiert)
- Optimierung von Zirkulationsklassifikationen auch hinsichtlich von Trockenperioden
- Ausweitung der Untersuchungen auf konvektive Starkniederschläge (zuvor nur großflächige)
- Entwicklung operationeller Warnprodukte mit Einschätzung des Risikopotentials für Starkniederschläge und anhaltende Trockenperioden
- Erweiterung um hydrologische Modellierung (TU Wien): Wettergenerator und stochastische Niederschlags-Abflussmodellierung

Weitere Ziele:

- Fallstudien ausgewählter Hochwasserereignisse und Trockenperioden aus dem Zeitraum 1850-1950
- Untersuchung von typinternen Änderungen, Persistenzen, Ereignis-Wiederholungen
- Exemplarische Anwendung der Tools auf einen ausgewählten Modell-Lauf für die Klimazukunft bis 2100

Gegitterter Beobachtungsdatensatz Niederschlag

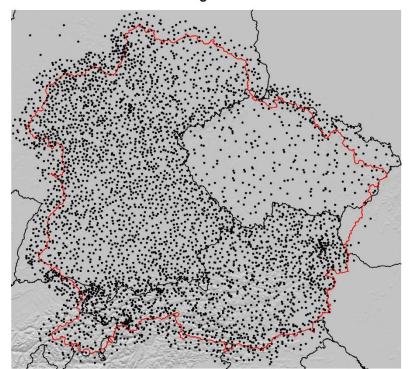

Parameter: Niederschlagssummen

Zeitliche Auflösung: täglich

Räumliche Auflösung: 6 km x 6 km Zeitraum: 01.01.1961 – 31.12.2017

Gebiet:

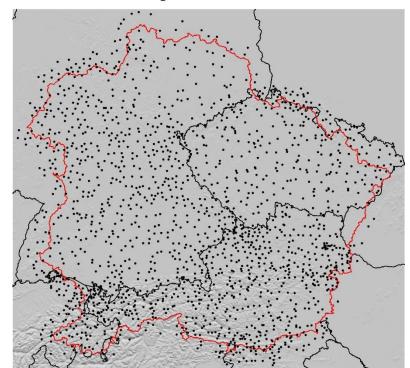
- Einzugsgebiet der Donau bei der Einmündung der March
- Einzugsgebiet der Elbe bei der Einmündung der Saale
- Einzugsgebiet des Main
- Einzugsgebiet von Werra und Fulda
- Einzugsgebiet der Lahn
- Einzugsgebiet des Neckar
- Einzugsgebiet des Bodensees
- übriges Gebiet Österreichs



Tägliche Niederschlagsfelder als Produkt monatlicher mittlerer Summen und täglicher Anomalien

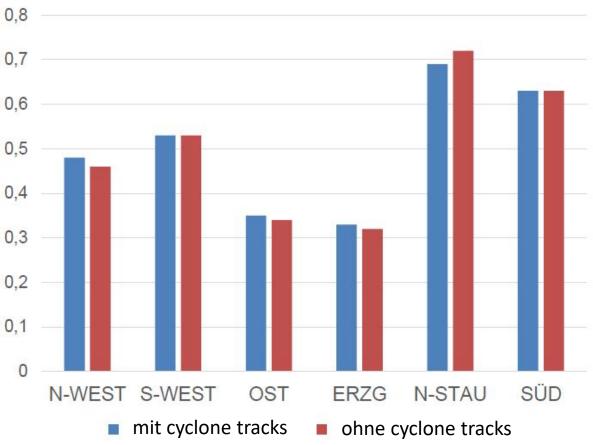
Mittlere monatliche Niederschlagssummen

- Dichtes Stationsnetz: alle Stationsdaten mit mind. 25 Jahren Messung
- "Kriging mit externer Drift" als Interpolationsmethode


Stationsnetzwerk für Hintergrundfelder: ~ 4250 Stationen

Relative tägliche Niederschlagsanomalien

- Zeitlich konsistentes Stationsnetz: nur Stationsdaten mit mind. 95%
 Datenabdeckung zw. 1961-2017
- SYMAP Interpolationsalgorithmus mit Distanz- und Richtungsgewichtung


Stationsnetzwerk für tägliche Anomaliefelder: ~ 1750 Stationen

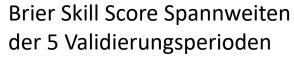
Zirkulationstyp-Klassifikation mit Zyklonenzugbahnen als Kovariate

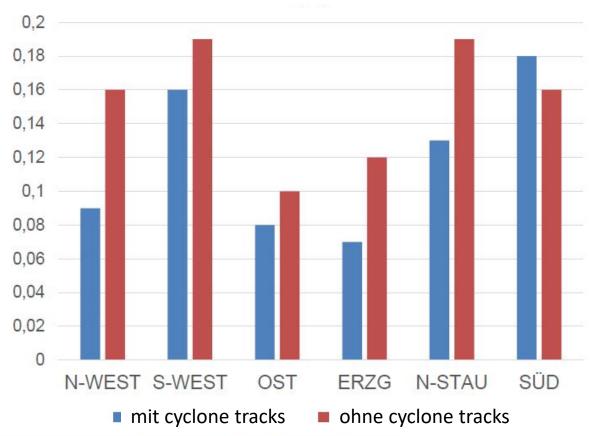
Validierungsperioden

1 (1959-1967)

2 (1968-1976)

3 (1977-1985)


4 (1986-1994)


5 (1995-2003)

Zirkulationstyp-Klassifikation mit Zyklonenzugbahnen als Kovariate

Validierungsperioden

1 (1959-1967)

2 (1968-1976)

3 (1977-1985)

4 (1986-1994)

5 (1995-2003)

Konvektiver Starkniederschlag als weitere Kovariate:

Differenzierung von täglichen Niederschlagstypen (flächig, konvektiv, gemischt) auf Basis der Kovarianz der gegitterten Niederschlagsfelder

außerdem: Additive logistische Regressionen zwischen Prädiktoren (Instabilität, vertikale Windscherung) und Wahrscheinlichkeit lokaler Starkregen

... wird weiterentwickelt

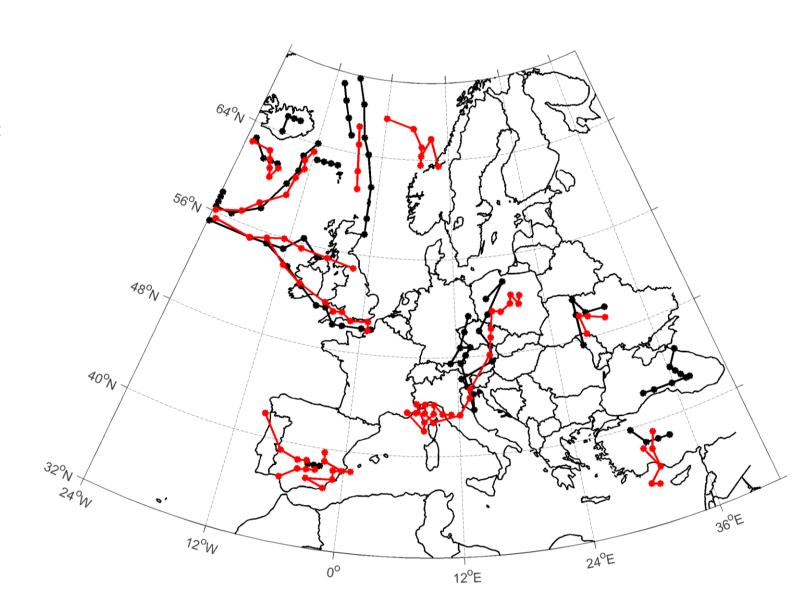
Operationelle Zugbahnklassifikation - Übergang zu alternativem Tracking

Tracking

Methodenvergleich

In WETRAX+ neu verwendete Trackingmethode im Vergleich zu jener im alten WETRAX (Hofstätter): Routine von H. Wernli und M. Sprenger, basierend auf der Methode von H. Wernli und C. Schwierz (2006)

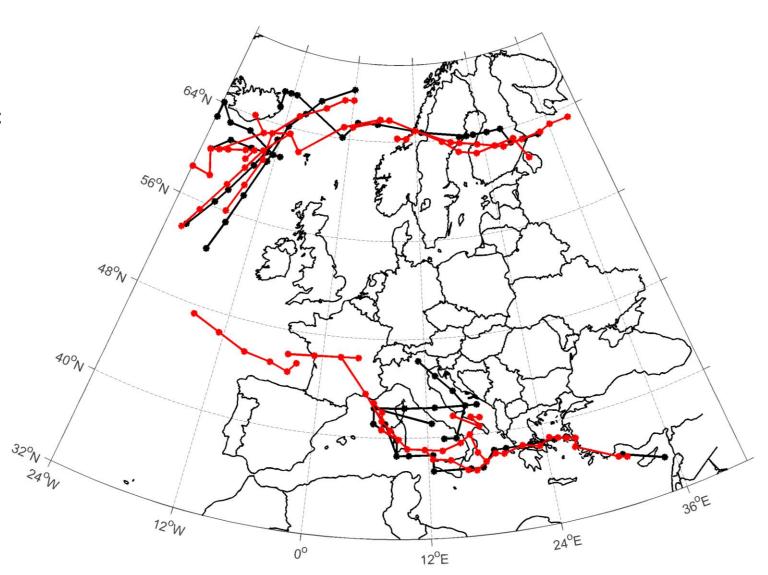
Wernli und Schwierz	Hofstätter
Niveau: SLP (Tracking von Druckminima)	SLP, 700 hPa (Tracking von Druckminima)
Zeitschritte: 6 h	6 h
Abgeschlossene Tiefs	Abgeschlossene Tiefs und offene Wellen, Tröge
Track kann auf Grund der strikten Kriterien 1-2 Zeitschritte überspringen	Track überspringt keinen Zeitschritt
Lebensdauer eines Tiefs muss mindestens 24 h betragen	Lebensdauer eines Tiefs muss mindestens 24 h betragen


Operationelle Zugbahnklassifikation - Übergang zu alternativem Tracking

Tracking

Erste Vergleiche

- <u>schwarz:</u> Methode Wernli und Schwierz;
- <u>rot:</u> Methode Hofstätter;
- grid resolution = 1.25°
- Bsp. *Sommer* (08.-14.08.2002)

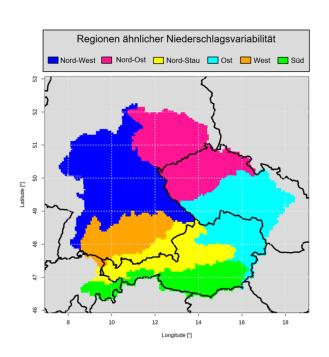

Operationelle Zugbahnklassifikation - Übergang zu alternativem Tracking

Tracking

Erste Vergleiche

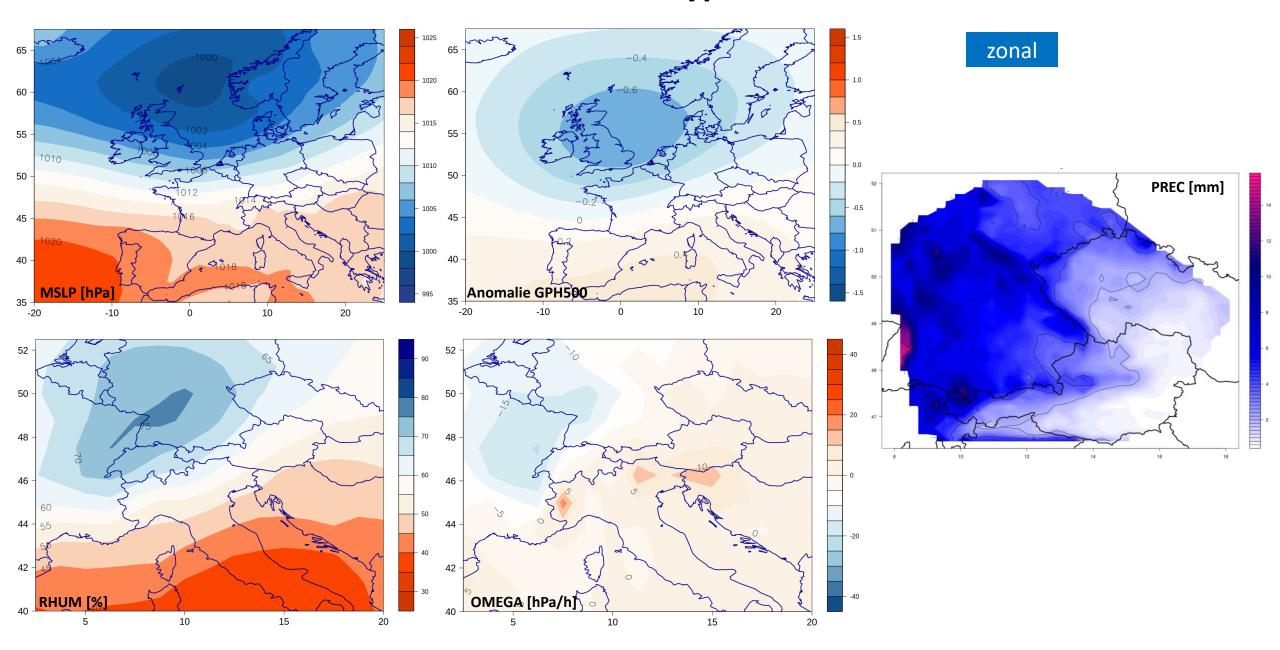
- <u>schwarz:</u> Methode Wernli und Schwierz;
- <u>rot:</u> Methode Hofstätter;
- grid resolution = 1.25°
- Bsp. *Winter* (10.-20.01.2002)

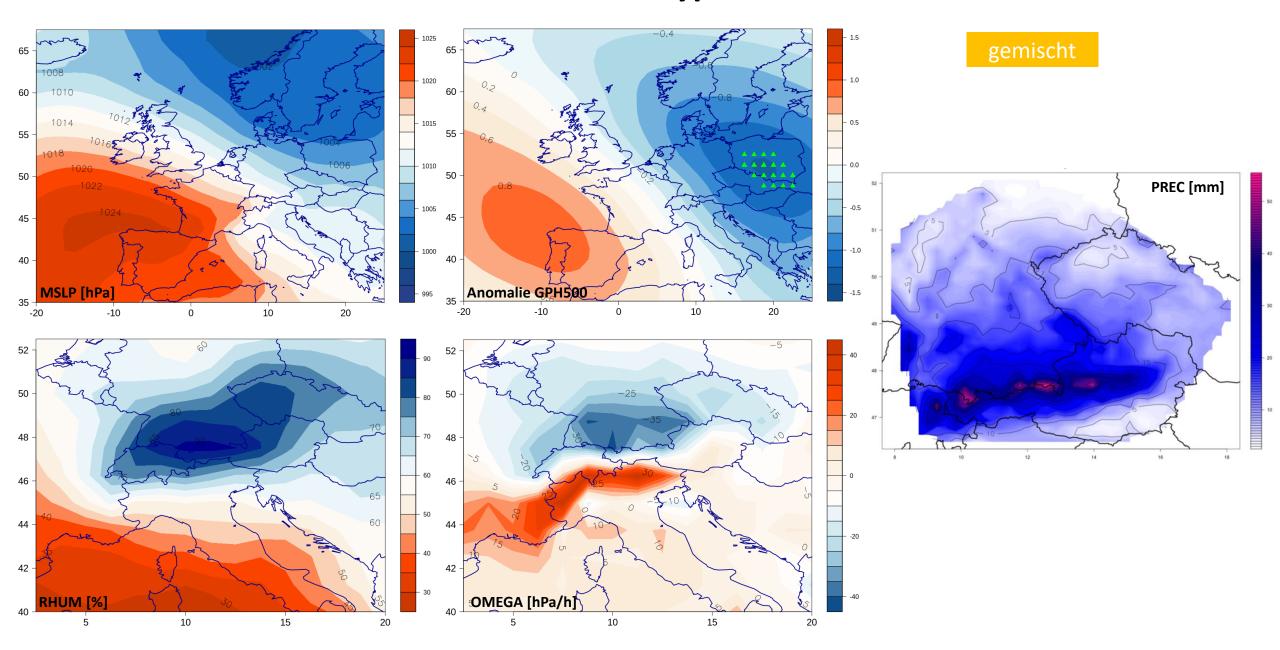
Zirkulationstyp-Klassifikationen



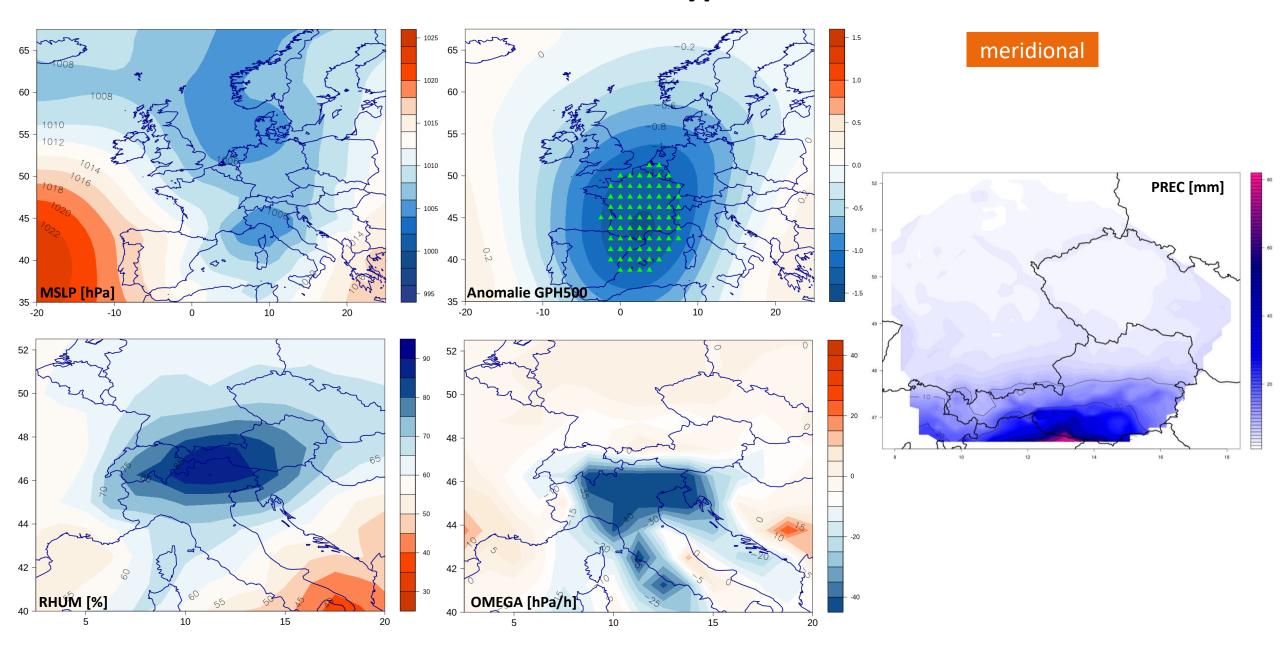
	Starkniederschlag	Trockenheit					
Klassifikation	SANDRA (jew. 18 Typen): Simulated Annealing and Diversified Randomisation						
Konditionierung	auf 6 regionale Niederschlags-Reihen						
Variablen	MSLP, GPH 500hPa, OMEGA 700hPa, RHUM 700hPa	MSLP, RHUM 700hPa, U-Wind und V-Wind 700hPa, Temperatur					
Relevante Zirkulationstypen	Alle Zirkulationstypen ZT, die an mind. 20% aller ZT-Tage in mind. 1 Region mit einem gewichteten Niederschlagsmittel über dem 95. Perzentil (1961-2017) verknüpft sind.	Alle Zirkulationstypen ZT, die an mind. 20% aller ZT-Tage in mind. 1 Region mit einem gewichteten Niederschlagsmittel unter dem 20. Perzentil (1961-2017) verknüpft sind.					

Starkniederschlagsrelevante ZT, Bsp. Herbst

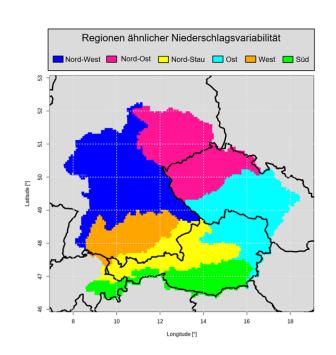

Prozentanteil der **Zirkulationstyp-Tage**, die in den Niederschlagsregionen mit Starkniederschlag verbunden sind (1961-2017)


Zirkulationsmuster Z(onal) G(emischt) M(eridional)

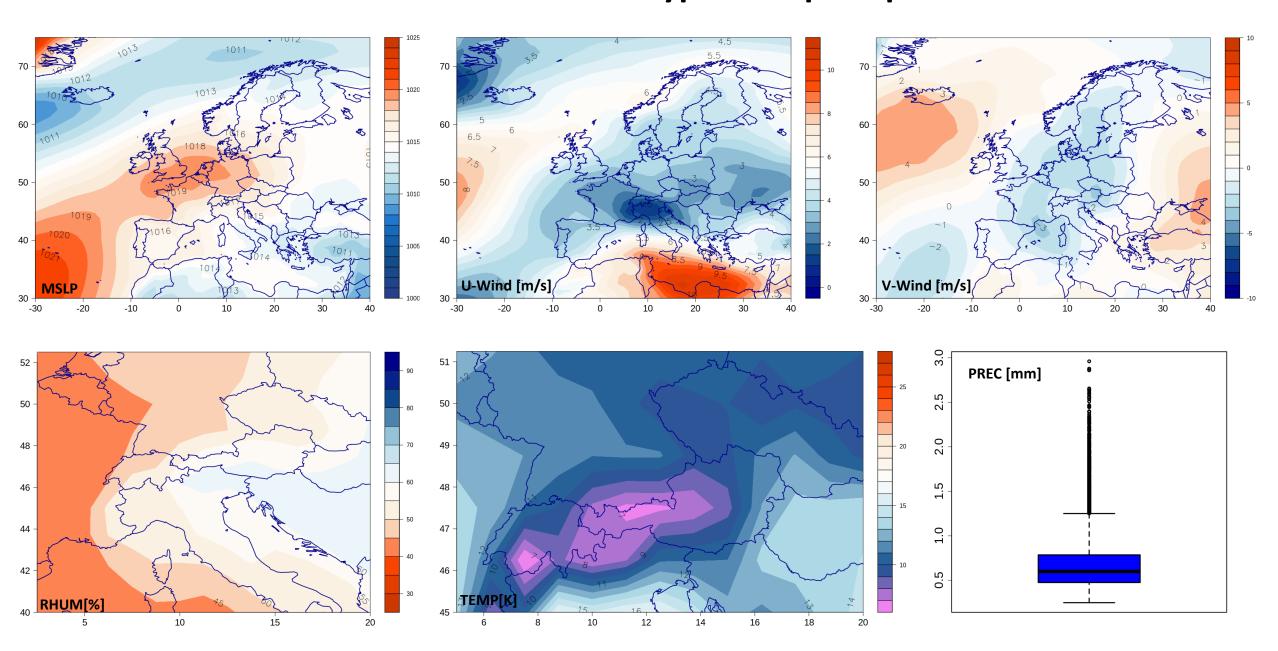
	Nord-West	Ost	Nord-Ost	Nord-Stau	Süd	West
ZT 1 G	10.87	14.49	11.59	63.04	0	25.36
ZT 2 M	22.45	45.92	40.82	55.1	52.04	50
ZT 3 Z	26.3	0	10.71	0	0	9.09
ZT 4	1.89	19.5	9.43	0	0.63	3.14
ZT 5 Z	83.33	23.68	63.16	18.42	0	57.02
ZT 6	0	14.81	5.76	1.65	0	0.82
ZT 7	0	0	0.66	0	0	0
ZT 8	0	2.35	2.75	0	0	0
ZT 9 M	5.94	19.8	6.93	16.83	100	8.91
ZT 10 G	55.88	55.88	32.35	100	20.59	82.35
ZT 11 M	10.81	81.08	32.43	89.19	100	64.86
ZT 12	0	0	0	0	0	0
ZT 13	0	0	0	0	0	0
ZT 14	0	0	0	0	0	0
ZT 15	0	1.24	2.07	0	0	0
ZT 16	0	0.15	0.76	0	0	0
ZT 17	0	0	0.22	0	0	0
ZT 18 M	2.63	5.7	4.39	0.44	23.68	2.63


SNR - Zirkulationstyp 3 - Herbst

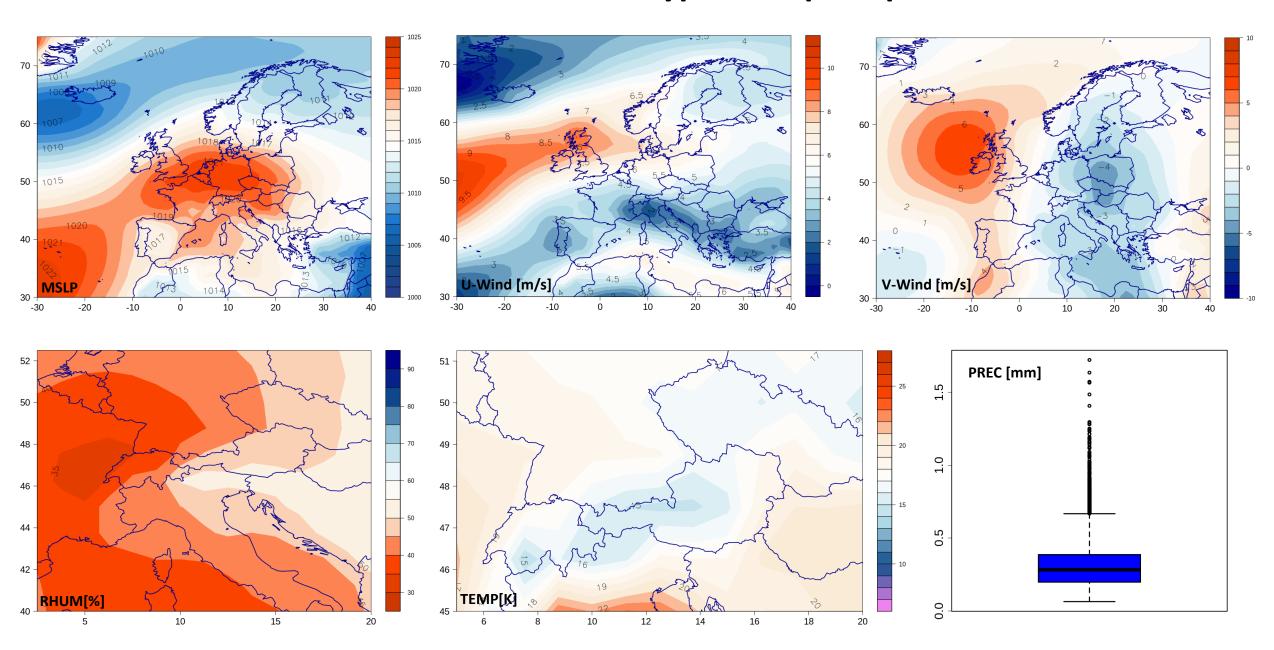
SNR - Zirkulationstyp 10 - Herbst


SNR - Zirkulationstyp 9 - Herbst

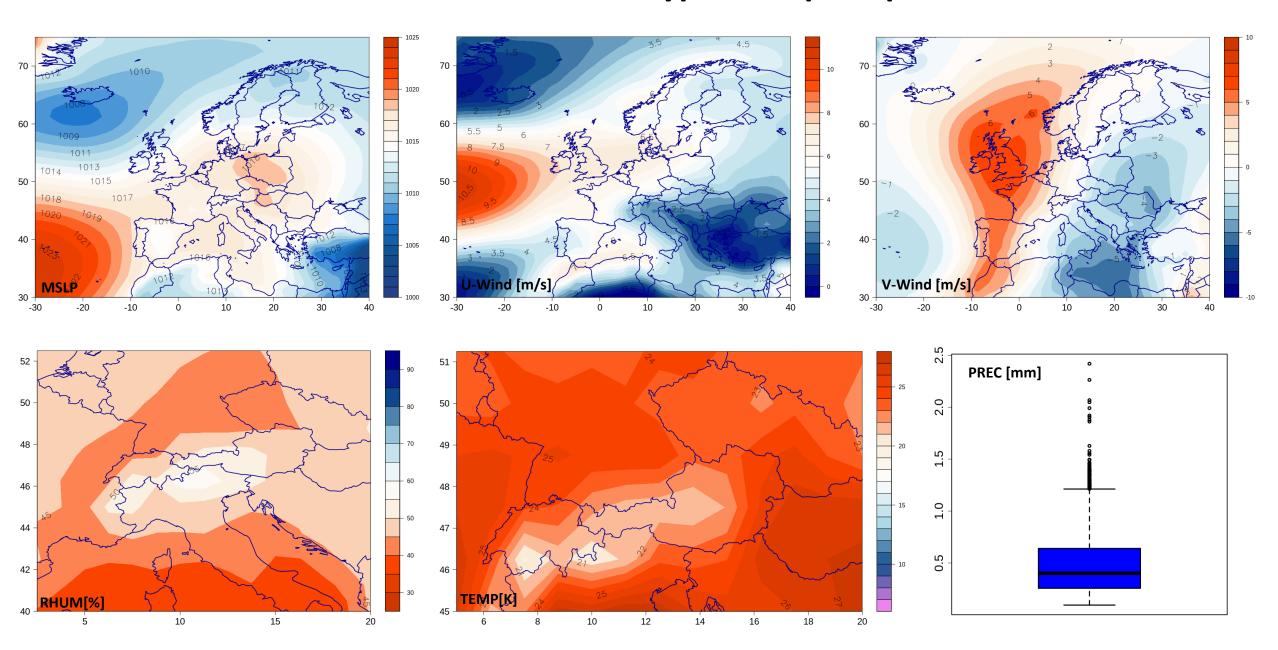
Trockenheitsrelevante ZT, Bsp. Apr-Sep



Prozentanteil der **Zirkulationstyp-Tage**, die in den Niederschlagsregionen mit Trockenheit verbunden sind (1961-2017)



	Nord-West	Ost	Nord-Ost	Nord-Stau	Süd	West
ZT 1	0	2.17	1.21	0	0.48	0
ZT 2	0.32	0.96	1.6	0.64	0.64	0.32
ZT 3	8.89	21.85	18.61	21.76	13.98	5.74
ZT 4	0	0	0	0	0	0
ZT 5	0	0.2	0.2	0	0	0
ZT 6	4.07	1.83	8.55	0	0	0.81
ZT 7	0	0	0	0	0	0
ZT 8	3.54	1.86	6.11	0	0.8	1.06
ZT 9	0	0	0	0	1.03	0
ZT 10	0	0	0	0	0	0
ZT 11	0.69	0.69	3.45	0	0	0
ZT 12	27.97	22.74	22.85	24.7	29.05	17.19
ZT 13	0.32	0	0.95	0	0	0
ZT 14	34.56	43.4	38.17	33.98	31.75	17.8
ZT 15	0	6.41	0.67	2.53	6.58	0
ZT 16	45.7	36.91	38.95	42.02	46.06	28.12
ZT 17	0.82	0	0.82	0	1.23	0
ZT 18	0	0	0	0	0	0


DRY - Zirkulationstyp 12 – Apr-Sep

DRY - Zirkulationstyp 16 – Apr-Sep

DRY - Zirkulationstyp 14 - Apr-Sep

Stochastische N-A-Modellierung

Niederschlag-Abfluss-Modelle für Donau und Drau

- Modelle der TU Wien sind grundsätzlich vorhanden,
- jedoch Adaptierung erforderlich
 - Inputdaten auf Basis der WETRAX+ Stationen
 - Rekalibrierung der Modellparameter erforderlich
- Stochastische Zeitreihen aus Wettergenerator

Niederschlagsmodell

Basierend auf Modell von Bardossy und Plate (1992)

Stationsbasis

Tagesniederschläge

Modell TU Wien

Stationsbasis

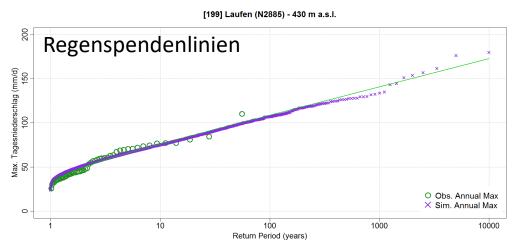
24h und 6h-Niederschlagssummen

Disaggregation auf 1-h-Niederschläge

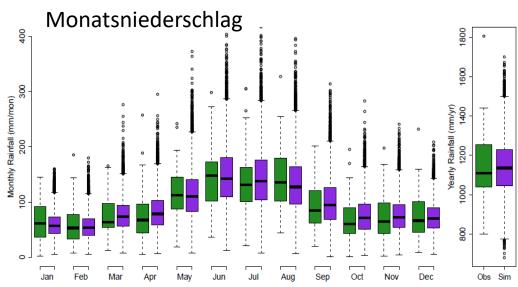
Vorteil: in kleineren Einzugsgebieten kann die

Charakteristik von hochwasserbildenden Niederschlägen

besser abgebildet werden


Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247–1259, doi:10.1029/91WR02589.

Wettergenerator


Generierung von 10.000 Jahre langen Niederschlags- und Temperatur-Zeitreihen unter Berücksichtigung der kombinierten Zirkulationstyp-Zugbahnen-Klassifikation

Kalibrieren und Testen an Niederschlag-Stationsdaten

Beobachtung Simulation

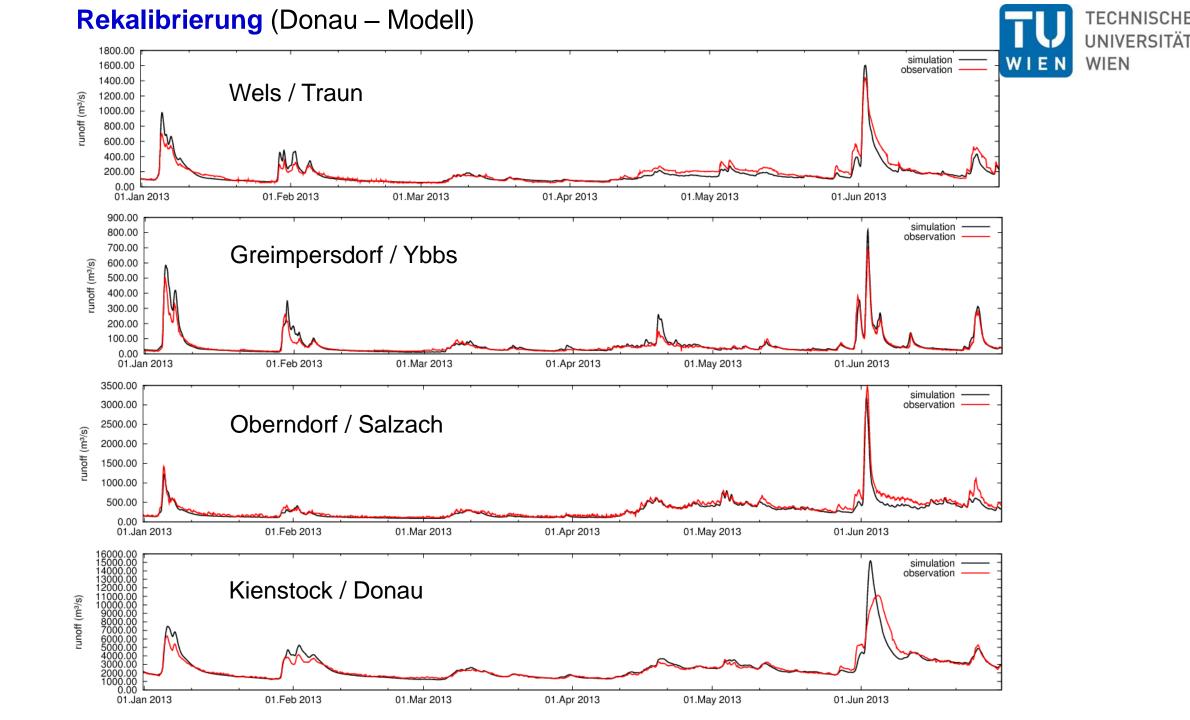
Station Laufen (Berchtesgadner Land)

Modellschema:

konzeptionelles, kontinuierliches Wasserbilanzmodell

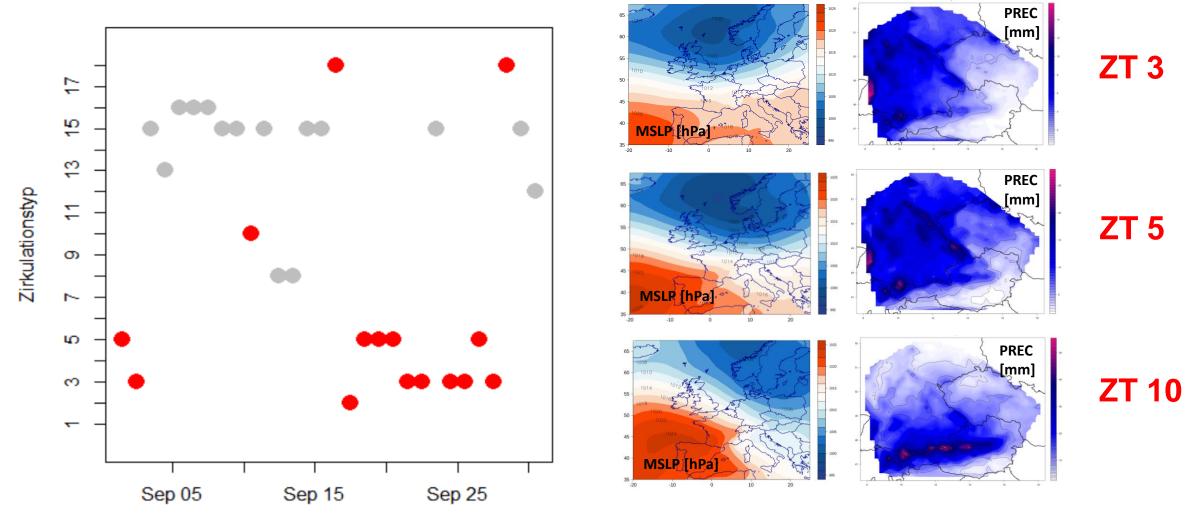
(Blöschl et al., 2007)

- → Schneemodul
- → Bodenfeuchtemodul
- → Abfluss am Hang und im Gerinne (Szolgay, 2004)


Zeitliche Auflösung

→ 1 Stunde

Räumliche Auflösung


- → Raster 5x5 km (Donau)
- → Raster 1x1 km (Drau)

Unter Verwendung der Wettergenerator-Daten Generierung von 10.000 Jahre langen simulierten Abflussganglinien mit der Beurteilungsmöglichkeit, wie sich Zirkulationstypen und Zugbahnen auf die Hochwasserwahrscheinlichkeiten auswirken

Historische Hochwasserereignisse Mitteleuropa ab 1850 Bsp. Hochwasser September 1899

Verteilung der Zirkulationstypen

Typinterne Änderungen der starkniederschlagsrelevanten ZT

ZT-spezifische **Trendanalyse** der klassifizierten Variablen **MSLP, GPH 500hPa, OMEGA 700hPa, RHUM 700hPa**:

Minimum, Maximum, Mittel und Differenz (Mann-Kendall-Test, signifikante Änderungen (a=0.05) sind farblich hervorgehoben)

Herbst

rZT		MSLP			GPH			OMEGA			RHUM	
	min / max	mean	diff	min / max	mean	diff	min / max	mean	diff	min / max	mean	diff
1 NW	o/-	o	o	o/+	o	o	o/o	o	o	o/o	<u>-</u>	o
2 Vb	o/o	o	o	o/o	o	o	o/o	o	o	o/o	o	+
3 Wa	o/o	0	o	o/+	0	0	o/o	o	0	-/o	-	+
5 Wz	o/o	0	o	o/o	0	0	+/o	0	0	o/o	_	o
9 Vb	o/o	0	o	o/o	0	0	o/o	o	0	o/o	o	o
10 NW	o/o	o	o	o/o	o	o	o/o	o	o	o/o	o	o
11 Vb	o/o	o	o	0/0	o	o	0/0	o	0	0/0	o	o
18 Tr-ME Vb	0/0	0	0	0/0	0	0	0/0	0	0	o/o	0	0

Typinterne Änderungen der trockenheitsrelevanten ZT

ZT-spezifische **Trendanalyse** der klassifizierten Variablen **MSLP, RHUM 700hPa, Temp, U-Wind und V-Wind 700hPa**: **Minimum, Maximum, Mittel und Differenz** (Mann-Kendall-Test, signifikante Änderungen (a=0.05) sind farblich hervorgehoben)

Apr-Sep

rZT		MSLP			RHUM			TEMP			U-Wind			V-Wind	
	min/max	mean	diff	min / max	mean	diff	min / max	mean	diff	min / max	mean	diff	min / max	mean	diff
3 SW	o/o	o	o	-/o	_	+	o/o	+	o	+/o	_	_	o/o	o	o
							·			Ź					
12 H-Gb	o/o	o	+	-/-	_	+	o/+	0	+	+/0	o	o	+/0	o	0
12 H-Gb	0/0	0	T	-/-	-	T	0/+	U	T	+/0	U	U	+/0	0	0
14 H-Oeur	o/-	0	0	-/o	-	+	+/+	+	+	+/o	-	-	+/o	0	-
16 H-ME	-/o	0	+	-/o	-	+	-/o	-	О	+/o	-	O	o/+	+	+

Ausblick:

- Weiterer Einsatz der neuen Tools (Zugbahnen-Klassifikation, konvektive Niederschläge, N-A-Modellierung)
- operationelle Warnprodukte für Starkniederschläge und anhaltende Trockenperioden
- Historische Fallstudien
- Exemplarische Zukunftsprojektionen